Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 913
Filtrar
1.
Transl Psychiatry ; 14(1): 172, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561342

RESUMO

Observational studies suggest that posttraumatic stress disorder (PTSD) increases risk for various autoimmune diseases. Insights into shared biology and causal relationships between these diseases may inform intervention approaches to PTSD and co-morbid autoimmune conditions. We investigated the shared genetic contributions and causal relationships between PTSD, 18 autoimmune diseases, and 3 immune/inflammatory biomarkers. Univariate MiXeR was used to contrast the genetic architectures of phenotypes. Genetic correlations were estimated using linkage disequilibrium score regression. Bi-directional, two-sample Mendelian randomization (MR) was performed using independent, genome-wide significant single nucleotide polymorphisms; inverse variance weighted and weighted median MR estimates were evaluated. Sensitivity analyses for uncorrelated (MR PRESSO) and correlated horizontal pleiotropy (CAUSE) were also performed. PTSD was considerably more polygenic (10,863 influential variants) than autoimmune diseases (median 255 influential variants). However, PTSD evidenced significant genetic correlation with nine autoimmune diseases and three inflammatory biomarkers. PTSD had putative causal effects on autoimmune thyroid disease (p = 0.00009) and C-reactive protein (CRP) (p = 4.3 × 10-7). Inferences were not substantially altered by sensitivity analyses. Additionally, the PTSD-autoimmune thyroid disease association remained significant in multivariable MR analysis adjusted for genetically predicted inflammatory biomarkers as potential mechanistic pathway variables. No autoimmune disease had a significant causal effect on PTSD (all p values > 0.05). Although causal effect models were supported for associations of PTSD with CRP, shared pleiotropy was adequate to explain a putative causal effect of CRP on PTSD (p = 0.18). In summary, our results suggest a significant genetic overlap between PTSD, autoimmune diseases, and biomarkers of inflammation. PTSD has a putative causal effect on autoimmune thyroid disease, consistent with existing epidemiologic evidence. A previously reported causal effect of CRP on PTSD is potentially confounded by shared genetics. Together, results highlight the nuanced links between PTSD, autoimmune disorders, and associated inflammatory signatures, and suggest the importance of targeting related pathways to protect against disease and disability.


Assuntos
Doenças Autoimunes , Doença de Hashimoto , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/genética , Fenótipo , Proteína C-Reativa , Doenças Autoimunes/genética , Biomarcadores , Estudo de Associação Genômica Ampla
2.
Clin Epigenetics ; 16(1): 38, 2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431614

RESUMO

BACKGROUND: Large-scale cohort and epidemiological studies suggest that PTSD confers risk for dementia in later life but the biological mechanisms underlying this association remain unknown. This study examined this question by assessing the influences of PTSD, APOE ε4 genotypes, DNA methylation, and other variables on the age- and dementia-associated biomarkers Aß40, Aß42, GFAP, NfL, and pTau-181 measured in plasma. Our primary hypothesis was that PTSD would be associated with elevated levels of these markers. METHODS: Analyses were based on data from a PTSD-enriched cohort of 849 individuals. We began by performing factor analyses of the biomarkers, the results of which identified a two-factor solution. Drawing from the ATN research framework, we termed the first factor, defined by Aß40 and Aß42, "Factor A" and the second factor, defined by GFAP, NfL and pTau-181, "Factor TN." Next, we performed epigenome-wide association analyses (EWAS) of the two-factor scores. Finally, using structural equation modeling (SEM), we evaluated (a) the influence of PTSD, age, APOE ε4 genotype and other covariates on levels of the ATN factors, and (b) tested the mediating influence of the EWAS-significant DNAm loci on these associations. RESULTS: The Factor A EWAS identified one significant locus, cg13053408, in FANCD2OS. The Factor TN analysis identified 3 EWAS-significant associations: cg26033520 near ASCC1, cg23156469 in FAM20B, and cg15356923 in FAM19A4. The SEM showed age to be related to both factors, more so with Factor TN (ß = 0.581, p < 0.001) than Factor A (ß = 0.330, p < 0.001). Genotype-determined African ancestry was associated with lower Factor A (ß = 0.196, p < 0.001). Contrary to our primary hypothesis, we found a modest negative bivariate correlation between PTSD and the TN factor scores (r = - 0.133, p < 0.001) attributable primarily to reduced levels of GFAP (r = - 0.128, p < 0.001). CONCLUSIONS: This study identified novel epigenetic associations with ATN biomarkers and demonstrated robust age and ancestral associations that will be essential to consider in future efforts to develop the clinical applications of these tests. The association between PTSD and reduced GFAP, which has been reported previously, warrants further investigation.


Assuntos
Doença de Alzheimer , Demência , Transtornos de Estresse Pós-Traumáticos , Humanos , Epigenoma , Metilação de DNA , Apolipoproteína E4/genética , Transtornos de Estresse Pós-Traumáticos/genética , Biomarcadores , Demência/genética , Doença de Alzheimer/genética , Proteínas de Transporte/genética
3.
Psychiatry Res ; 333: 115757, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309009

RESUMO

Cannabis use has been increasing over the past decade, not only in the general US population, but particularly among military veterans. With this rise in use has come a concomitant increase in cannabis use disorder (CUD) among veterans. Here, we performed an epigenome-wide association study for lifetime CUD in an Iraq/Afghanistan era veteran cohort enriched for posttraumatic stress disorder (PTSD) comprising 2,310 total subjects (1,109 non-Hispanic black and 1,201 non-Hispanic white). We also investigated CUD interactions with current PTSD status and examined potential indirect effects of DNA methylation (DNAm) on the relationship between CUD and psychiatric diagnoses. Four CpGs were associated with lifetime CUD, even after controlling for the effects of current smoking (AHRR cg05575921, LINC00299 cg23079012, VWA7 cg22112841, and FAM70A cg08760398). Importantly, cg05575921, a CpG strongly linked to smoking, remained associated with lifetime CUD even when restricting the analysis to veterans who reported never smoking cigarettes. Moreover, CUD interacted with current PTSD to affect cg05575921 and cg23079012 such that those with both CUD and PTSD displayed significantly lower DNAm compared to the other groups. Finally, we provide preliminary evidence that AHRR cg05575921 helps explain the association between CUD and any psychiatric diagnoses, specifically mood disorders.


Assuntos
Cannabis , Abuso de Maconha , Transtornos de Estresse Pós-Traumáticos , Transtornos Relacionados ao Uso de Substâncias , Veteranos , Humanos , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/psicologia , Veteranos/psicologia , Abuso de Maconha/psicologia , Metilação de DNA , Transtornos Relacionados ao Uso de Substâncias/epidemiologia
4.
Mol Biol Rep ; 51(1): 325, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393604

RESUMO

Post-traumatic stress disorder (PTSD) is one of the most widespread and disabling psychiatric disorders among combat veterans. Substantial interindividual variability in susceptibility to PTSD suggests the presence of different risk factors for this disorder. Twin and family studies confirm genetic factors as important risk factors for PTSD. In addition to genetic factors, epigenetic factors, especially DNA methylation, can be considered as a potential mechanism in changing the risk of PTSD. So far, many genetic and epigenetic association studies have been conducted in relation to PTSD. In genetic studies, many single nucleotide polymorphisms have been identified as PTSD risk factors. Meanwhile, the variations in catecholamines-related genes, serotonin transporter and receptors, brain-derived neurotrophic factor, inflammatory factors, and apolipoprotein E are the most prominent candidates. CpG methylation in the upstream regions of many genes is also considered a PTSD risk factor. Accurate identification of genetic and epigenetic changes associated with PTSD can lead to the presentation of suitable biomarkers for susceptible individuals to this disorder. This study aimed to delineate prominent genetic variations and epigenetic changes associated with post-traumatic stress disorder in military veterans who have experienced combat, focusing on genetic and epigenetic association studies.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Veteranos , Humanos , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/psicologia , Veteranos/psicologia , Epigênese Genética/genética , Metilação de DNA/genética , Polimorfismo de Nucleotídeo Único/genética
5.
J Affect Disord ; 351: 624-630, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309478

RESUMO

BACKGROUND: Military sexual trauma (MST) is a prevalent issue within the U.S. military. Victims are more likely to develop comorbid diseases such as posttraumatic stress disorder (PTSD) and major depressive disorder (MDD). Nonetheless, not everyone who suffers from MST develops PTSD and/or MDD. DNA methylation, which can regulate gene expression, might give us insight into the molecular mechanisms behind this discrepancy. Therefore, we sought to identify genomic loci and enriched biological pathways that differ between patients with and without MST, PTSD, and MDD. METHODS: Saliva samples were collected from 113 female veterans. Following DNA extraction and processing, DNA methylation levels were measured through the Infinium HumanMethylationEPIC BeadChip array. We used limma and bump hunting methods to generate the differentially methylated positions and differentially methylated regions (DMRs), respectively. Concurrently, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome to find enriched pathways. RESULTS: A DMR close to the transcription start site of ZFP57 was differentially methylated between subjects with and without PTSD, replicating previous findings and emphasizing the potential role of ZFP57 in PTSD susceptibility. In the pathway analyses, none survived multiple correction, although top GO terms included some potentially relevant to MST, PTSD, and MDD etiology. CONCLUSION: We conducted one of the first DNA methylation analyses investigating MST along with PTSD and MDD. In addition, we found one DMR near ZFP57 to be associated with PTSD. The replication of this finding indicates further investigation of ZFP57 in PTSD may be warranted.


Assuntos
Transtorno Depressivo Maior , Militares , Delitos Sexuais , Transtornos de Estresse Pós-Traumáticos , Veteranos , Humanos , Feminino , Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/genética , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Transtornos de Estresse Pós-Traumáticos/genética , Metilação de DNA , Trauma Sexual Militar
6.
Psychiatr Genet ; 34(2): 37-42, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38288984

RESUMO

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are two neurodevelopmental disorders that often result in individuals experiencing traumatic events. However, little is known about the connection between ADHD/ASD and post-traumatic stress disorder (PTSD). This study aimed to investigate the genetic associations between these disorders. METHODS: Genetic correlation analysis was used to examine the genetic components shared between ADHD (38 691 cases and 275 986 controls), ASD (18 381 cases and 27 969 controls) and PTSD (23 212 cases and 151 447 controls). Two-sample Mendelian randomization analyses were employed to explore the bidirectional causal relationships between ADHD/ASD and PTSD. RESULTS: The results of the genetic correlation analysis revealed significant positive correlations of PTSD with ADHD(r g = 0.70) and ASD (r g = 0.34). Furthermore, the Mendelian randomization analysis revealed that genetic liabilities to ADHD [odds ratio (OR) = 1.14; 95% confidence interval (CI), 1.06-1.24; P  = 7.88 × 10 -4 ] and ASD (OR = 1.04; CI, 1.01-1.08; P  = 0.014) were associated with an increased risk of developing PTSD later in life. However, no evidence supported that genetic liability to PTSD could elevate the risk of ADHD or ASD. CONCLUSION: The findings of this study supported that ADHD and ASD may increase the risk of PTSD, but not vice versa.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Espectro Autista/genética , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/complicações , Razão de Chances
7.
Transl Psychiatry ; 14(1): 67, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296956

RESUMO

BACKGROUND: The causal effects of gut microbiome and the development of posttraumatic stress disorder (PTSD) are still unknown. This study aimed to clarify their potential causal association using mendelian randomization (MR). METHODS: The summary-level statistics for gut microbiome were retrieved from a genome-wide association study (GWAS) of the MiBioGen consortium. As to PTSD, the Freeze 2 datasets were originated from the Psychiatric Genomics Consortium Posttraumatic Stress Disorder Working Group (PGC-PTSD), and the replicated datasets were obtained from FinnGen consortium. Single nucleotide polymorphisms meeting MR assumptions were selected as instrumental variables. The inverse variance weighting (IVW) method was employed as the main approach, supplemented by sensitivity analyses to evaluate potential pleiotropy and heterogeneity and ensure the robustness of the MR results. We also performed reverse MR analyses to explore PTSD's causal effects on the relative abundances of specific features of the gut microbiome. RESULTS: In Freeze 2 datasets from PGC-PTSD, eight bacterial traits revealed a potential causal association between gut microbiome and PTSD (IVW, all P < 0.05). In addition, Genus.Dorea and genus.Sellimonas were replicated in FinnGen datasets, in which eight bacterial traits revealed a potential causal association between gut microbiome and the occurrence of PTSD. The heterogeneity and pleiotropy analyses further supported the robustness of the IVW findings, providing additional evidence for their reliability. CONCLUSION: Our study provides the potential causal impact of gut microbiomes on the development of PTSD, shedding new light on the understanding of the dysfunctional gut-brain axis in this disorder. Our findings present novel evidence and call for investigations to confirm the association between their links, as well as to illuminate the underlying mechanisms.


Assuntos
Microbioma Gastrointestinal , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/genética , Estudo de Associação Genômica Ampla , Reprodutibilidade dos Testes , Suplementos Nutricionais
8.
J Affect Disord ; 349: 541-551, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218255

RESUMO

BACKGROUND: Post-traumatic stress disorder (PTSD) is one of the most serious sequelae of trauma with serious impact worldwide. Studies have suggested an association between PTSD and major depressive disorder (MDD), but the underlying common mechanisms remain unclear. This study aimed to further explore the molecular mechanism between PTSD and MDD via comprehensive bioinformatics analysis. METHODS: The microarray data of PTSD and MDD were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) analysis and weighted gene co-expression network analysis (WGCNA) were performed to identify the co-expressed genes associated with PTSD and MDD. Gene Set Enrichment Analysis (GSEA), enrichment analyses based on Disease Ontology (DO), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed using R software. Then, R software was used for single-sample gene set enrichment analysis (ssGSEA) and immune infiltration analysis on the co-expressed genes in the two datasets., Therefore, a logistic regression model was constructed to predict PTSD and MDD using the R language. Ultimately, this study employed PTSD and MDD models to assess alterations in the expression of target genes within the mouse hippocampus. RESULTS: Four core genes (GNAQ, DPEP3, ICAM2, PACSIN2) were obtained through different analyses, and these genes had predictive validity for PTSD and MDD, playing an important role in the common mechanism of PTSD and MDD. The study findings reveal decreased expression levels of DPEP3, GNAQ, and PACDIN2 in PTSD samples, accompanied by an increased expression of ICAM2. In MDD samples, the expression of DPEP3 and ICAM2 is reduced, whereas GNAQ and PACDIN2 show an increase in expression. CONCLUSIONS: This study provides a new perspective on the common molecular mechanisms of PTSD and MDD. These common pathways and core genes may provide promising clues for further experimental studies.


Assuntos
Transtorno Depressivo Maior , Transtornos de Estresse Pós-Traumáticos , Animais , Camundongos , Transtorno Depressivo Maior/genética , Transtornos de Estresse Pós-Traumáticos/genética , Biologia Computacional , Bases de Dados Factuais , Progressão da Doença
9.
J Affect Disord ; 349: 286-296, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38199412

RESUMO

BACKGROUND: Early life stress is a major risk factor for later development of psychiatric disorders, including post-traumatic stress disorder (PTSD). An intricate relationship exists between various neurotransmitters (such as glutamate, norepinephrine or serotonin), calcium/calmodulin-dependent protein kinase II (CaMKII), as an important regulator of glutamatergic synaptic function, and PTSD. Here, we developed a double-hit model to investigate the interaction of maternal deprivation (MD) as an early life stress model and single prolonged stress (SPS) as a PTSD model at the behavioral and molecular levels. METHODS: Male Wistar rats exposed to these stress paradigms were subjected to a comprehensive behavioral analysis. In hippocampal synaptosomes we investigated neurotransmitter release and glutamate concentration. The expression of CaMKII and the content of monoamines were determined in selected brain regions. Brain-derived neurotrophic factor (BDNF) mRNA was quantified by radioactive in situ hybridization. RESULTS: We report a distinct behavioral phenotype in the double-hit group. Double-hit and SPS groups had decreased hippocampal presynaptic glutamatergic function. In hippocampus, double-hit stress caused a decrease in autophosphorylation of CaMKII. In prefrontal cortex, both SPS and double-hit stress had a similar effect on CaMKII autophosphorylation. Double-hit stress, rather than SPS, affected the norepinephrine and serotonin levels in prefrontal cortex, and suppressed BDNF gene expression in prefrontal cortex and hippocampus. LIMITATIONS: The study was conducted in male rats only. The affected brain regions cannot be restricted to hippocampus, prefrontal cortex and amygdala. CONCLUSION: Double-hit stress caused more pronounced and distinct behavioral, molecular and functional changes, compared to MD or SPS alone.


Assuntos
Serotonina , Transtornos de Estresse Pós-Traumáticos , Humanos , Ratos , Masculino , Animais , Serotonina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos Wistar , Ácido Glutâmico/metabolismo , Norepinefrina , Privação Materna , Regulação para Baixo , Encéfalo/metabolismo , Hipocampo/metabolismo , Transtornos de Estresse Pós-Traumáticos/genética , Modelos Animais de Doenças
10.
Transl Psychiatry ; 14(1): 22, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200001

RESUMO

Circulating cell-free mitochondrial DNA (ccf-mtDNA) is a biomarker of cellular injury or cellular stress and is a potential novel biomarker of psychological stress and of various brain, somatic, and psychiatric disorders. No studies have yet analyzed ccf-mtDNA levels in post-traumatic stress disorder (PTSD), despite evidence of mitochondrial dysfunction in this condition. In the current study, we compared plasma ccf-mtDNA levels in combat trauma-exposed male veterans with PTSD (n = 111) with those who did not develop PTSD (n = 121) and also investigated the relationship between ccf mt-DNA levels and glucocorticoid sensitivity. In unadjusted analyses, ccf-mtDNA levels did not differ significantly between the PTSD and non-PTSD groups (t = 1.312, p = 0.191, Cohen's d = 0.172). In a sensitivity analysis excluding participants with diabetes and those using antidepressant medication and controlling for age, the PTSD group had lower ccf-mtDNA levels than did the non-PTSD group (F(1, 179) = 5.971, p = 0.016, partial η2 = 0.033). Across the entire sample, ccf-mtDNA levels were negatively correlated with post-dexamethasone adrenocorticotropic hormone (ACTH) decline (r = -0.171, p = 0.020) and cortisol decline (r = -0.149, p = 0.034) (viz., greater ACTH and cortisol suppression was associated with lower ccf-mtDNA levels) both with and without controlling for age, antidepressant status and diabetes status. Ccf-mtDNA levels were also significantly positively associated with IC50-DEX (the concentration of dexamethasone at which 50% of lysozyme activity is inhibited), a measure of lymphocyte glucocorticoid sensitivity, after controlling for age, antidepressant status, and diabetes status (ß = 0.142, p = 0.038), suggesting that increased lymphocyte glucocorticoid sensitivity is associated with lower ccf-mtDNA levels. Although no overall group differences were found in unadjusted analyses, excluding subjects with diabetes and those taking antidepressants, which may affect ccf-mtDNA levels, as well as controlling for age, revealed decreased ccf-mtDNA levels in PTSD. In both adjusted and unadjusted analyses, low ccf-mtDNA levels were associated with relatively increased glucocorticoid sensitivity, often reported in PTSD, suggesting a link between mitochondrial and glucocorticoid-related abnormalities in PTSD.


Assuntos
Ácidos Nucleicos Livres , Diabetes Mellitus , Transtornos de Estresse Pós-Traumáticos , Veteranos , Humanos , Masculino , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/genética , Glucocorticoides , Hidrocortisona , DNA Mitocondrial/genética , Hormônio Adrenocorticotrópico , Antidepressivos , Biomarcadores , Dexametasona/farmacologia
11.
BMC Psychiatry ; 24(1): 11, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166870

RESUMO

BACKGROUND: Norepinephrine transporter (NET) is encoded by the SLC6A2 gene and is a potential target for studying the pathogenesis of PTSD. To the best of our knowledge, no prior investigations have examined SLC6A2 polymorphism-related neuroimaging abnormalities in PTSD patients. METHODS: In 218 Han Chinese adults who had lost their sole child, we investigated the association between the T-182 C SLC6A2 genotype and gray matter volume (GMV). Participants included 57 PTSD sufferers and 161 non-PTSD sufferers, and each group was further separated into three subgroups based on each participant's SLC6A2 genotype (TT, CT, and CC). All participants received magnetic resonance imaging (MRI) and clinical evaluation. To assess the effects of PTSD diagnosis, genotype, and genotype × diagnosis interaction on GMV, 2 × 3 full factorial designs were used. Pearson's correlations were used to examine the association between GMV and CAPS, HAMD, and HAMA. RESULTS: The SLC6A2 genotype showed significant main effects on GMV of the left superior parietal gyrus (SPG) and the bilateral middle cingulate gyrus (MCG). Additionally, impacts of the SLC6A2 genotype-diagnosis interaction were discovered in the left superior frontal gyrus (SFG). The CAPS, HAMA, and HAMD scores, as well as the genotype main effect and diagnostic SLC6A2 interaction, did not significantly correlate with each other. CONCLUSION: These findings indicate a modulatory effect that the SLC6A2 polymorphism exerts on the SPG and MCG, irrespective of PTSD diagnosis. We found evidence to suggest that the SLC6A2 genotype-diagnosis interaction on SFG may potentially contribute to PTSD pathogenesis in adults who lost their sole child.


Assuntos
Substância Cinzenta , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Transtornos de Estresse Pós-Traumáticos , Adulto , Criança , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , China , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética/métodos , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Polimorfismo de Nucleotídeo Único , Córtex Pré-Frontal , Transtornos de Estresse Pós-Traumáticos/genética
12.
Eur J Med Res ; 29(1): 44, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212778

RESUMO

BACKGROUND: Post-traumatic stress disorder (PTSD), a disease state that has an unclear pathogenesis, imposes a substantial burden on individuals and society. Traumatic brain injury (TBI) is one of the most significant triggers of PTSD. Identifying biomarkers associated with TBI-related PTSD will help researchers to uncover the underlying mechanism that drives disease development. Furthermore, it remains to be confirmed whether different types of traumas share a common mechanism of action. METHODS: For this study, we screened the eligible data sets from the Gene Expression Omnibus (GEO) database, obtained differentially expressed genes (DEGs) through analysis, conducted functional enrichment analysis on the DEGs in order to understand their molecular mechanisms, constructed a PPI network, used various algorithms to obtain hub genes, and finally evaluated, validated, and analyzed the diagnostic performance of the hub genes. RESULTS: A total of 430 upregulated and 992 down-regulated differentially expressed genes were extracted from the TBI data set. A total of 1919 upregulated and 851 down-regulated differentially expressed genes were extracted from the PTSD data set. Functional enrichment analysis revealed that the differentially expressed genes had biological functions linked to molecular regulation, cell signaling transduction, cell metabolic regulation, and immune response. After constructing a PPI network and introducing algorithm analysis, the upregulated hub genes were identified as VNN1, SERPINB2, and ETFDH, and the down-regulated hub genes were identified as FLT3LG, DYRK1A, DCN, and FKBP8. In addition, by comparing the data with patients with other types of trauma, it was revealed that PTSD showed different molecular processes that are under the influence of different trauma characteristics and responses. CONCLUSIONS: By exploring the role of different types of traumas during the pathogenesis of PTSD, its possible molecular mechanisms have been revealed, providing vital information for understanding the complex pathways associated with TBI-related PTSD. The data in this study has important implications for the design and development of new diagnostic and therapeutic methods needed to treat and manage PTSD.


Assuntos
Lesões Encefálicas Traumáticas , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/genética , Perfilação da Expressão Gênica/métodos , Biomarcadores/metabolismo , Algoritmos , Lesões Encefálicas Traumáticas/genética , Biologia Computacional/métodos
13.
Transl Psychiatry ; 14(1): 32, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238325

RESUMO

Soldiers may be exposed to traumatic stress during combat deployment and thus are at risk for developing posttraumatic stress disorder (PTSD). Genetic and epigenetic evidence suggests that PTSD is linked to forming stress-related memories. In the current study, we investigated post-deployment associations of PTSD symptoms with differential DNA methylation in a sample of Burundian soldiers returning from the African Union Mission in Somalia's war zone. We used a matched longitudinal study design to explore epigenetic changes associated with PTSD symptoms in N = 191 participants. PTSD symptoms and saliva samples were collected at 1-3 (t1) and 9-14 months (t2) after the return of the soldiers to their home base. Individuals with either worsening or improving PTSD symptoms were matched for age, stressful, traumatic and self-perpetrated events prior to the post-assessment, traumatic and violent experiences between the post- and the follow-up assessment, and violence experienced during childhood. A mixed model analysis was conducted to identify top nominally significantly differentially methylated genes, which were then used to perform a gene enrichment analysis. The linoleic acid metabolism pathway was significantly associated with post-deployment PTSD symptoms, after accounting for multiple comparisons. Linoleic acid has been linked to memory and immune related processes in previous research. Our findings suggest that differential methylation of linoleic acid pathway genes is associated with PTSD and thus may merit closer inspection as a possible mediator of resilience.


Assuntos
Militares , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Ácido Linoleico , Estudos Longitudinais , Metilação de DNA
14.
JAMA Psychiatry ; 81(1): 34-44, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910111

RESUMO

Importance: Posttraumatic stress disorder (PTSD) has been reported to be a risk factor for several physical and somatic symptoms. However, the genetics of PTSD and its potential association with medical outcomes remain unclear. Objective: To examine disease categories and laboratory tests from electronic health records (EHRs) that are associated with PTSD polygenic scores. Design, Setting, and Participants: This genetic association study was conducted from July 15, 2021, to January 24, 2023, using EHR data from participants across 4 biobanks. The polygenic scores of PTSD symptom severity (PGS-PTSD) were tested with all available phecodes in Vanderbilt University Medical Center's biobank (BioVU), Mass General Brigham (MGB), Michigan Genomics Initiative (MGI), and UK Biobank (UKBB). The significant medical outcomes were tested for overrepresented disease categories and subsequently tested for genetic correlation and 2-sample mendelian randomization (MR) to determine genetically informed associations. Multivariable MR was conducted to assess whether PTSD associations with health outcomes were independent of the genetic effect of body mass index and tobacco smoking. Exposures: Polygenic score of PTSD symptom severity. Main Outcomes and Measures: A total of 1680 phecodes (ie, International Classification of Diseases, Ninth Revision- and Tenth Revision-based phenotypic definitions of health outcomes) across 4 biobanks and 490 laboratory tests across 2 biobanks (BioVU and MGB). Results: In this study including a total of 496 317 individuals (mean [SD] age, 56.8 [8.0] years; 263 048 female [53%]) across the 4 EHR sites, meta-analyzing associations of PGS-PTSD with 1680 phecodes from 496 317 individuals showed significant associations to be overrepresented from mental health disorders (fold enrichment = 3.15; P = 5.81 × 10-6), circulatory system (fold enrichment = 3.32; P = 6.39 × 10-12), digestive (fold enrichment = 2.42; P = 2.16 × 10-7), and respiratory outcomes (fold enrichment = 2.51; P = 8.28 × 10-5). The laboratory measures scan with PGS-PTSD in BioVU and MGB biobanks revealed top associations in metabolic and immune domains. MR identified genetic liability to PTSD symptom severity as an associated risk factor for 12 health outcomes, including alcoholism (ß = 0.023; P = 1.49 × 10-4), tachycardia (ß = 0.045; P = 8.30 × 10-5), cardiac dysrhythmias (ß = 0.016, P = 3.09 × 10-5), and acute pancreatitis (ß = 0.049, P = 4.48 × 10-4). Several of these associations were robust to genetic effects of body mass index and smoking. We observed a bidirectional association between PTSD symptoms and nonspecific chest pain and C-reactive protein. Conclusions and Relevance: Results of this study suggest the broad health repercussions associated with the genetic liability to PTSD across 4 biobanks. The circulatory and respiratory systems association was observed to be overrepresented in all 4 biobanks.


Assuntos
Doenças Cardiovasculares , Pancreatite , Transtornos de Estresse Pós-Traumáticos , Humanos , Feminino , Pessoa de Meia-Idade , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/psicologia , Doença Aguda , Fatores de Risco , Estudo de Associação Genômica Ampla
15.
Curr Neuropharmacol ; 22(4): 543-556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37491857

RESUMO

Brain-Derived Neurotrophic Factor (BDNF) plays an important role in brain development, neural plasticity, and learning and memory. The Val66Met single-nucleotide polymorphism is a common genetic variant that results in deficient activity-dependent release of BDNF. This polymorphism and its impact on fear conditioning and extinction, as well as on symptoms of post-traumatic stress disorder (PTSD), have been of increasing research interest over the last two decades. More recently, it has been demonstrated that regular physical activity may ameliorate impairments in fear extinction and alleviate symptoms in individuals with PTSD via an action on BDNF levels and that there are differential responses to exercise between the Val66Met genotypes. This narrative literature review first describes the theoretical underpinnings of the development and persistence of intrusive and hypervigilance symptoms commonly seen in PTSD and their treatment. It then discusses recent literature on the involvement of BDNF and the Val66Met polymorphism in fear conditioning and extinction and its involvement in PTSD diagnosis and severity. Finally, it investigates research on the impact of physical activity on BDNF secretion, the differences between the Val66Met genotypes, and the effect on fear extinction learning and memory and symptoms of PTSD.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , Exercício Físico , Extinção Psicológica/fisiologia , Medo , Polimorfismo de Nucleotídeo Único , Transtornos de Estresse Pós-Traumáticos/genética
16.
Brain Behav Immun ; 116: 229-236, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070623

RESUMO

Up to 40 % of individuals who sustain traumatic injuries are at risk for posttraumatic stress disorder (PTSD) and the conditional risk for developing PTSD is even higher for Black individuals. Exposure to racial discrimination, including at both interpersonal and structural levels, helps explain this health inequity. Yet, the relationship between racial discrimination and biological processes in the context of traumatic injury has yet to be fully explored. The current study examined whether racial discrimination is associated with a cumulative measure of biological stress, the gene expression profile conserved transcriptional response to adversity (CTRA), in Black trauma survivors. Two-weeks (T1) and six-months (T2) post-injury, Black participants (N = 94) provided a blood specimen and completed assessments of lifetime racial discrimination and PTSD symptoms. Mixed effect linear models evaluated the relationship between change in CTRA gene expression and racial discrimination while adjusting for age, gender, body mass index (BMI), smoking history, heavy alcohol use history, and trauma-related variables (mechanism of injury, lifetime trauma). Results revealed that for individuals exposed to higher levels of lifetime racial discrimination, CTRA significantly increased between T1 and T2. Conversely, CTRA did not increase significantly over time in individuals exposed to lower levels of lifetime racial discrimination. Thus, racial discrimination appeared to lead to a more sensitized biological profile which was further amplified by the effects of a recent traumatic injury. These findings replicate and extend previous research elucidating the processes by which racial discrimination targets biological systems.


Assuntos
Racismo , Transtornos de Estresse Pós-Traumáticos , Humanos , Centros de Traumatologia , População Negra/genética , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Expressão Gênica/genética
18.
Genes (Basel) ; 14(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38136935

RESUMO

Trauma in childhood and adolescence has long-term negative consequences in brain development and behavior and increases the risk for psychiatric disorders. Among them, post-traumatic stress disorder (PTSD) during adolescence illustrates the connection between trauma and substance misuse, as adolescents may utilize substances to cope with PTSD. Drug misuse may in turn lead to neuroadaptations in learning processes that facilitate the consolidation of traumatic memories that perpetuate PTSD. This reflects, apart from common genetic and epigenetic modifications, overlapping neurocircuitry engagement triggered by stress and drug misuse that includes structural and functional changes in limbic brain regions and the salience, default-mode, and frontoparietal networks. Effective strategies to prevent PTSD are needed to limit the negative consequences associated with the later development of a substance use disorder (SUD). In this review, we will examine the link between PTSD and SUDs, along with the resulting effects on memory, focusing on the connection between the development of an SUD in individuals who struggled with PTSD in adolescence. Neuroimaging has emerged as a powerful tool to provide insight into the brain mechanisms underlying the connection of PTSD in adolescence and the development of SUDs.


Assuntos
Uso Indevido de Medicamentos , Transtornos de Estresse Pós-Traumáticos , Transtornos Relacionados ao Uso de Substâncias , Humanos , Adolescente , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos Relacionados ao Uso de Substâncias/diagnóstico por imagem , Transtornos Relacionados ao Uso de Substâncias/psicologia , Encéfalo/diagnóstico por imagem , Neuroimagem
19.
Medicine (Baltimore) ; 102(46): e35869, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37986356

RESUMO

BACKGROUND: Post-traumatic stress disorder (PTSD) and anxiety are common mental illnesses and there are many similar pathogenesis and clinical manifestations between PTSD and anxiety. Kaixinsan powder (KXS), a commonly used prescription in traditional Chinese medicine, has been widely used to treat PTSD and anxiety. This study aims to explore the potential mechanisms of KXS for the same pathogenesis of PTSD and anxiety using a network pharmacology approach. METHODS: The bioactive components and relevant target genes of KXS were obtained from the database about Traditional Chinese Medicine. The key genes of PTSD and anxiety were derived from disease databases. Subsequently, the network of protein-protein interaction and a network of "drug-components-disease-targets" was constructed. In order to treat PTSD and anxiety, gene ontology enrichment and signaling pathway enrichment were analyzed by using R language and components-core targets associated were validated by molecular docking. RESULTS: One hundred three targets of KXS in treating PTSD and anxiety were identified. The results of protein-protein interaction analysis and molecular docking indicated that AKT1 and IL-6 were crucial targets. Moreover, KEGG analysis has shown that neuroactive ligand-receptor interaction, calcium signaling pathway, and cAMP signaling pathway may play crucial roles in treating PTSD and anxiety. Ten biological process, 10 molecular function, and 10 cellular component were revealed via gene ontology analysis. CONCLUSIONS: The network pharmacology study and molecular docking indicated that KXS treated anxiety and PTSD by multiple components, targets, and signaling pathways. These results provide an important reference for subsequent basic research on PTSD and anxiety.


Assuntos
Medicamentos de Ervas Chinesas , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/genética , Simulação de Acoplamento Molecular , Pós , Farmacologia em Rede , Ansiedade/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Sinalização do Cálcio
20.
Mol Psychiatry ; 28(9): 3851-3855, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37845495

RESUMO

Life threatening trauma and the development of PTSD during childhood, may each associate with transcriptional perturbation of immune cell glucocorticoid reactivity, yet their separable longer term contributions are less clear. The current study compared resting mononuclear cell gene expression levels of the nuclear receptor, subfamily 3, member 1 (NR3C1) coding the glucocorticoid receptor, its trans-activator spindle and kinetochore-associated protein 2 (SKA2), and its co-chaperon FKBP prolyl isomerase 5 (FKBP5), between a cohort of young adults first seen at the Hadassah Emergency Department (ED) after surviving a suicide bombing terror attack during childhood, and followed longitudinally over the years, and matched healthy controls not exposed to life threatening trauma. While significant reductions in mononuclear cell gene expression levels were observed among young adults for all three transcripts following early trauma exposure, the development of subsequent PTSD beyond trauma exposure, accounted for a small but significant portion of the variance in each of the three transcripts. Long-term perturbation in the expression of immune cell glucocorticoid response transcripts persists among young adults who develop PTSD following life threatening trauma exposure in childhood, denoting chronic dysregulation of immune stress reactivity.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Suicídio , Humanos , Adulto Jovem , Proteínas Cromossômicas não Histona , Glucocorticoides , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/metabolismo , Criança
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...